Scalable Parallel Libraries Conference, Oct. 1994

PASSION Runtime Library for Parallel I/O *

Rajeev Thakur

Ravi Ponnusamy

Rajesh Bordawekar

Alok Choudhary
Tarvinder Singh

Dept. of Electrical and Computer Eng. and
Northeast Parallel Architectures Center
Syracuse University, Syracuse, NY 13244

thakur, rajesh, choudhar, ravi, tpsingh @npac.syr.edu

Abstract

We are developing a compiler and runtime sup-
port system called PASSION: Parallel And Scalable
Software for Input-Output. PASSION provides soft-
ware support for I/0 intensive out-of-core loosely syn-
chronous problems. This paper gives an overview
of the PASSION Runtime Library and describes two
of the optimizations incorporated in it, namely Data
Prefetching and Data Sieving. Performance improve-
ments provided by these optimizations on the Intel
Touchstone Delta are discussed, together with an out-
of-core Median Filtering application.

1 Introduction

There are a number of applications which deal with
very large quantities of data. These applications exist
in diverse areas such as large scale scientific compu-
tations, database applications, hypertext and multi-
media systems, information retrieval and many other
applications of the Information Age. The number of
such applications and their data requirements keep
increasing day by day. Consequently, it has become
apparent that I/O performance rather than CPU or
communication performance may be the limiting fac-
tor in future computing systems. Recent advances in
high performance computing have resulted in comput-
ers which can provide more than 100 Gflops of com-
puting power. However, the performance of the I/0O
systems of these machines has lagged far behind. It
is still several orders of magnitude more expensive to
read data from disk than to read it from local memory.
Improvements are needed both in hardware as well as
software to reduce the imbalance between CPU per-
formance and I/O performance.

*This work was supported in part by NSF Young Investiga-
tor Award CCR-9357840, grants from Intel SSD and IBM Corp.,
and in part by USRA CESDIS Contract # 5555-26. This work
was performed in part using the Intel Touchstone Delta System
operated by Caltech on behalf of the Concurrent Supercomput-
ing Consortium. Access to this facility was provided by CRPC.

At Syracuse University, we consider the 1/O prob-
lem from a language, compiler and runtime support
point of view. We are developing a compiler and run-
time support system called PASSION: Parallel And
Scalable Software for Input-Output [4]. PASSION
provides support for compiling out-of-core data paral-
lel programs [16, 1], parallel input-output of data [2],
communication of out-of-core data, redistribution of
data stored on disks, many optimizations including
data prefetching from disks, data sieving, data reuse
etc., as well as support at the operating system level.
We have also developed an initial framework for run-
time support for out-of-core irregular problems [4].

This paper gives an overview of PASSION and de-
scribes some of the main features of the PASSION
Runtime Library. We explain the basic model of
computation and I/O used by the runtime library.
The runtime routines supported by PASSION are dis-
cussed. A number of optimizations have been in-
corporated in the runtime library to reduce the 1/O
cost. We describe in detail two of these optimizations,
namely Data Prefetching and Data Sieving. Perfor-
mance improvements provided by these optimizations
on the Intel Touchstone Delta are discussed, together
with an out-of-core Median Filtering application.

2 PASSION Overview

PASSION provides software support for I/O inten-
sive loosely synchronous problems. It has a layered ap-
proach and provides support at the compiler, runtime
and operating systems level as shown in Figure 1. The
PASSION compiler translates out-of-core HPF pro-
grams to message passing node programs with explicit
parallel I/O. It extracts information from user direc-
tives about the data distribution, which is required by
the PASSION runtime system. It restructures loops
having out-of-core arrays and also decides the trans-
formations on out-of-core data to map the distribu-
tion on disks with the usage in the loops. The PAS-
SION compiler uses well known techniques such as
loop stripmining, iteration blocking etc. to generate

1/0 Intensive OOC Applications

Compiler & Runtime Support

Prefetch Manager

1/0 Controller

Disk Subsystem

Cache and Buffer

Manager

Two-Phase Access Manager

Compiler Support for HPF Directives
Support for prefetching etc.

Loosely Synchronous Computations

Figure 1: PASSION Rings

efficient code for I/O intensive applications. It also
embeds calls to appropriate PASSION runtime rou-
tines which carry out I/O efficiently. The Compiler
and Runtime Layers pass data distribution and access
pattern information to the Two-Phase Access Man-
ager and the Prefetch Manager. They optimize 1/0O
using buffering, redistribution and prefetching strate-
gies. At the operating system level, PASSION pro-
vides support to handle prefetching and buffering.

The PASSION runtime support system makes I/0O
optimizations transparent to users. The runtime pro-
cedures can either be used together with a compiler to
translate out-of-core data parallel programs, or used
directly by application programmers. The runtime li-
brary performs the following functions:-

e hides disk data distribution from the user.

e provides consistent I/O performance independent
of data distribution.

e reorders I/O requests to minimize seek time.

e eliminates duplicate I/O requests to reduce I/O
cost.

o prefetches disk data to hide I/O latency.

Writing message passing parallel programs with ef-
ficient parallel 1/O is a tedious process. Instead, a

program written in a high-level data parallel language
like HPF can be translated into efficient code using
the PASSION compiler and runtime system. A de-
tailed description of all the features of PASSION is
given in [4].
2.1 Model for Computation and I/O

In the SPMD (Single Program Multiple Data) pro-
gramming model, each processor has a local array as-
sociated with it. In an in-core program, the local array
resides in the local memory of the processor. For large
data sets, however, local arrays cannot entirely fit in
main memory. In such cases, parts of the local array
have to be stored on disk. We refer to such a local ar-
ray as an Out-of-core Local Array (OCLA). Parts
of the OCLA need to be swapped between main mem-
ory and disk during the course of the computation.

The basic model for computation and 1/O used by
PASSION is shown in Figure 2. The simplest way to
view this model is to think of each processor as hav-
ing another level of memory which is much slower than
main memory. Since the local arrays are out-of-core,
they have to be stored in files on disk. The local ar-
ray of each processor is stored in a separate file called
the Local Array File (LAF) of that processor. The
node program explicitly reads from and writes into
the file when required. If the I/O architecture of the
system is such that each processor has its own disk,

Global Array

To PO=—

ToP2=—

{—= ToP1

— ToP3

_— _—
I____I I____I
PO, 1 PL;

Al

"

I
P2 — P8

- L
D/ Processors \I
ICLA
Disks

Local array
Files

Figure 2: Model for Computation and I/0

the LAF of each processor will be stored on the disk
attached to that processor. If there is a common set
of disks for all processors, the LAF will be distributed
across one or more of these disks. In other words,
we assume that each processor has its own logical disk
with the LAF stored on that disk. The mapping of
the logical disk to the physical disks is system depen-
dent. At any time, only a portion of the local array is
fetched and stored in main memory. The size of this
portion depends on the amount of memory available.
The portion of the local array which is in main mem-
ory is called the In-Core Local Array (ICLA). All
computations are performed on the data in the ICLA.
Thus, during the course of the program, parts of the
LAF are fetched into the ICLA, the new values are
computed and the ICLA is stored back into appropri-
ate locations in the LAF.

3 Runtime Support in PASSION
During program execution, data needs to be moved
back and forth between the LAF and the ICLA. Also,
since the global array is distributed, a processor may
need data from the local array of another processor.
This requires data to be communicated between pro-
cessors. Thus, runtime support is needed to perform
I/O as well as communication. The PASSION Run-
time Library consists of a set of high level special-

ized routines for parallel I/O and collective commu-
nication. These routines are built using the native
communication and I/O primitives of the system and
provide a high level abstraction which avoids the in-
convenience of working directly with the lower layers.
For example, the routines hide details such as buffer-
ing, mapping of files on disks, location of data in files,
synchronization, optimum message size for communi-
cation, best communication algorithms, communica-
tion scheduling, I/O scheduling etc.

3.1 PASSION Runtime Library
The PASSION routines can be divided into four

main categories based on their functionality — Array
Management/Access Routines, Communication Rou-
tines, Mapping Routines and Generic Routines. Some
of the basic routines and their functions are listed in

Table 1.

3.1.1 Array Management/Access Routines

These routines handle the movement of data between
the LAF and the ICLA. Any arbitrary regular section
of the OCLA can be read for an array stored in either
row-major or column-major order. The information
about the array such as its shape, size, distribution,
storage format etc. is passed to the routines using a

Array Management Routines
PASSION Routine Function
1 PASSION read_section Read a regular section from LAF to ICLA
2 PASSION _write_section Write a regular section from ICLA to LAF
3 | PASSION read_with _reuse read_section with data reuse [16]
4 PASSION _prefetch _read Asynchronous (non-blocking) read of a regular section
5 PASSION _prefetch_wait Wait for a prefetch to complete
Array Communication Routines
PASSION Routine Function
6 PASSION _oc_shift Shift type collective communication on out-of-core data
7 PASSION _oc_multicast Multicast communication on out-of-core data
Mapping Routines
PASSION Routine Function
8 PASSION _oc_disk_map Map disks to processors
9 PASSION _oc_file_map Generate local files from global files
Generic Routines
PASSION Routine Function
10 PASSION _oc_transpose Transpose an out-of-core array
11 PASSION _oc_matmul Perform out-of-core matrix multiplication

Table 1: Some of the PASSION Runtime Routines

data structure called the Out-of-Core Array Descrip-
tor (OCAD) [16]. The Data Sieving Method described

in Section 5 is used for improved performance.

3.1.2 Communication Routines

The Communication Routines perform collective com-
munication of data in the OCLA. We use the Explicit
Communication Method described in [16]. The com-
munication is done for the entire OCLA, i.e. all the
off-processor data needed by the OCLA is fetched dur-
ing the communication. This requires inter-processor
communication as well as disk accesses.

3.1.3 Mapping Routines

The Mapping Routines perform data and proces-
sor/disk mappings. Data mapping routines include
routines to generate local array files from a global file.
Disk mapping routines map physical disks onto logical

disks.

3.1.4 Generic Routines

The Generic Routines perform computations on out-
of-core arrays. Examples of these routines are out-of-
core transpose and out-of-core matrix multiplication.

3.2 Two-Phase Approach

The performance of parallel file systems depends
to a large extent on the way data is distributed on
disks and processors. The performance is best when
the data distribution on disks conforms to the data

distribution on processors. Other distributions give
much lower performance. To alleviate this problem,
the Two Phase Access Strategy has been proposed
in [8, 2]. In the Two Phase Approach, data is first read
in a manner conforming to the distribution on disks
and then redistributed among the processors. This is
found to give consistently good performance for all dis-
tributions [8, 2]. The PASSION runtime library uses
this Two Phase Approach for parallel I/O. In the first
phase, data is accessed using the data distribution,
stripe size, and set of reading nodes (possibly a sub-
set of the computational array) which conforms with
the distribution of data over the disks. In the second
phase, the data is redistributed at run-time to match
the application’s desired data distribution.

The Two-Phase Approach provides the follow-
ing advantages over the conventional Direct Access

Method:-

1. The distribution of data on disks is effectively hid-
den from the user.

2. It uses the higher bandwidth of the interconnec-
tion network.

3. It uses collective communication and collective
I/O operations.

4. It provides software caching of the out-of-core

data in main memory to exploit temporal and
spatial locality.

ot

. It aggregates I/O requests of compute nodes so
that only one copy of each data item is transferred
between disk and main memory.

F—t-- bbb bk oo p]

Read Comp Write Read

Comp Write Read Comp Write

(A) Without Prefetch

Read Comp Write Comp

F—t--—-b b oo pe

1
Read Read

Comp Write

R e T

(B) With Prefetch

Figure 3: Data Prefetching

3.3 Optimizations

A number of optimizations have been incorporated
in the PASSION runtime library to reduce the I/0
cost. One optimization called Data Reuse [16] reduces
the amount of I/O by reusing data already fetched into
main memory instead of reading it again from disk.
Two other optimizations, Data Prefetching and Data
Sieving, are described in Sections 4 and 5 respectively.
In addition, some other optimizations such as Software
Caching to reduce the number of I/O requests and
Access Reordering to reduce I/0O latency time, have
been incorporated.

4 Data Prefetching

In the model of computation and I/O described ear-
lier, the OCLA is divided into a number of slabs, each
of which can fit in the ICLA. Program execution pro-
ceeds as follows:- a slab of data is fetched from the
LAF to the ICLA; the computation is performed on
this slab and the slab is written back to the LAF.
This is repeated on other slabs till the end of the pro-
gram. Thus I/O and computation form distinct phases
in the program. A processor has to wait while each
slab is being read or written as there is no overlap be-
tween computation and I/O. This is illustrated in Fig-
ure 3(A) which shows the time taken for computation
and I/O on 3 slabs. For simplicity, reading, writing
and computation are shown to take the same amount
of time, which may not be true in certain cases.

The time taken by the program can be reduced if it
is possible to overlap computation with I/O in some
fashion. A simple way of achieving this is to issue an
asynchronous I/0O read request for the next slab im-
mediately after the current slab has been read. This
is called Data Prefetching. Since the read request is
asynchronous, the reading of the next slab can be over-
lapped with the computation being performed on the
current slab. If the computation time is comparable
to the I/O time, this can result in significant perfor-

mance improvement. Figure 3(B) shows how prefetch-
ing can reduce the time taken for the example in Fig-
ure 3(A). Since the computation time is assumed to
be the same as the read time, all reads other than the
first one get overlapped with computation. The to-
tal reduction in program time is equal to the time for
reading two slabs, as only two of the three reads can
be overlapped in this example.

Prefetching can be done using
the routine PASSION prefetch read() and the rou-
tine PASSION prefetch wait() can be used to wait
for the prefetch to complete.

4.1 Performance

We use an out-of-core Median Filtering program to
illustrate the performance of Data Prefetching. Me-
dian Filtering is frequently used in computer vision
and image processing applications to smooth the in-
put image. Each pixel is assigned the median of the
values of its neighbors within a window of a particular
size, say 3 x 3 or 5 x b or larger. We have implemented
a parallel out-of-core Median Filtering program using
PASSION runtime routines for I/O and communica-
tion. The image is distributed among processors in
one dimension along columns and stored in local array
files. Depending on the window size, each processor
needs a few columns from its right and left neighbors.
This requires a shift type communication which is im-
plemented using the routine PASSION oc_shift ().

Tables 2 and 3 show the performance of Median
Filtering on the Intel Touchstone Delta for windows
of size 3 x 3 and 5 x 5 respectively. The image is of
size 2K x 2K pixels. We assume this to be out-of-
core for the purpose of experimentation. The number
of processors is varied from 4 to 64 and the size of
the ICLA is varied in each case in such a way that
the number of slabs varies from 4 to 16. Since the
Touchstone Delta has 64 disks, each processor’s LAF
can be stored on a separate disk.

The following observations can be made from these

Time (ec)

50.0

40.0

30.0

20.0

10.0

Table 2: Performance of Median Filtering using 3 x 3 window (time in sec.)

4 slabs 8 slabs 16 slabs
Procs || Prefetch | No Prefetch || Prefetch | No Prefetch || Prefetch | No Prefetch
4 36.37 46.56 33.63 46.75 30.65 47.21
8 18.32 23.37 16.72 24.41 16.36 24.86
16 9.180 12.33 8.730 12.60 8.580 13.35
32 5.340 6.830 5.260 7.000 5.080 7.160
64 5.650 5.850 4.970 5.970 5.410 6.230

Table 3: Performance of Median Filtering using 5 x 5 window (time in sec.)

4 slabs 8 slabs 16 slabs
Procs || Prefetch | No Prefetch || Prefetch | No Prefetch || Prefetch | No Prefetch
4 81.47 94.09 79.25 95.63 78.58 96.88
8 41.81 47.76 41.35 49.32 41.01 50.59
16 21.57 25.41 21.40 27.28 21.74 27.81
32 11.36 12.83 11.40 13.64 11.43 14.81
64 7.110 9.010 6.810 9.110 8.090 9.197

Without prefetch
- With prefetch =

| hﬁby

Processors

Figure 4: Median Filtering using 3 x 3 window

tables:-

1.

In all cases, prefetching improves performance
considerably. In some cases, the improvement is
close to 50%. Figures 4 and 5 show the relative
performance with and without prefetching when
the number of slabs is 8.

Without prefetching, as the number of slabs is in-
creased, the time taken increases. This is because
more number of slabs means a smaller slab size
which results in more number of I/O requests.

3. With prefetching, as the number of slabs in in-
creased, the time taken decreases in most cases.
Since the first slab can never be prefetched, all
processors have to wait for the first slab to be
read. As the slab size is reduced, the wait time
for the first slab is also reduced and there is more
overlap of computation and I/O. However, the
number of I/O requests increases. When the slab
size is large, a reduction in the slab size by half
improves performance because the saving in the
wait time for the first slab is higher than the in-
crease in time due to the larger number of 1/0O
requests. But when the slab size is small (64 pro-
cessor case with 8 or 16 slabs), the higher number
of I/O requests costs more than the decrease in
wait time for the first slab. Hence the perfor-
mance actually degrades in this case.

5 Data Sieving

All the PASSION runtime routines for reading
or writing data from/to disks support the read-
ing/writing of regular sections of arrays. We define
a regular section of an array as any portion of an ar-
ray which can be specified in terms of its lower bound,
upper bound and stride in each dimension. The need
for reading array sections from disks may arise due to a
number of reasons, for example FORALL or array as-
signment statements involving sections of out-of-core
arrays.

Consider the array of size (11,11) shown in Fig-
ure 6, which is stored on disk. Suppose it is required
to read the section (2:10:2,3:9:2) of this array. The el-
ements to be read are circled in the figure. Since these

Time (ec)

100.0
E Without Prefetch
80.0 With Prefetch B
60.0 i
40.0 - B
20.0 4
4 8 16 32 64

Processors

Figure 5: Median Filtering using 5 x 5 window

elements are stored with a stride on disk, it is not pos-
sible to read them using one read call. A simple way
of reading this array section is to explicitly move the
file pointer to each element and read it individually,
which requires as many reads as the number of ele-
ments. We call this the Direct Read Method. A major
disadvantage of this method is the large number of
I/O calls and low granularity of data transfer. Since
the I/O latency is very high, this method proves to be
very expensive. For example, on the Intel Touchstone
Delta using 1 processor and 1 disk, it takes 16.06 ms.
to read 1024 integers as one block, whereas it takes
1948 ms. to read all of them individually.

Suppose it required to read a section of a two-
dimensional array specified by (I : w1 : s1,la : ug :
s2). The number of array elements in this section is
([(ur —l)/s1] + 1) x ([(uz — l2)/s2] + 1). Therefore,
in the Direct Read Method,

No. of I/O requests = ([(u1—11)/s1]+1)x ([(ua—12)/s2] +1)
No. of array elements read per access = 1
Thus in this method, the number of 1/O requests is
very high and the number of elements accessed per
request is very low, which is undesirable.

We propose a much more efficient method called
Data Sieving to read or write out-of-core array sec-
tions having strides in one or more dimensions. Data
Sieving can be explained with the help of Figure 7.
As explained earlier, each processor has an out-of-core
local array (OCLA) associated with it. The OCLA is
(logically) divided into slabs, each of which can fit in
main memory (ICLA). The OCLA shown in the figure
has four slabs. Let us assume that it is necessary to
read the array section shown in Figure 7, specified by
(i 1wy 281,13 1wzt $2), into the ICLA. Although this
section spans three slabs of the OCLA, because of the
stride all the data elements can fit in the ICLA.

. O EEENO EEENO IO I .

(11,1) (11,11)

Figure 6: Accessing out-of-core array sections

In the Data Sieving Method, the entire block of
data from column !5 to us if the storage is column
major, or the entire block from row l; to u; if the
storage 1s row major, is read into a temporary buffer
in main memory using one read call. The required
data is then extracted from this buffer and placed in
the ICLA. Hence the name Data Sieving. A major ad-
vantage of this method is that it requires only one I/O
call and the rest is data transfer within main memory.
The main disadvantage is the high memory require-
ment. Another disadvantage is the extra amount of
data that is read from disk. However, we have found
that the savings in the number of I/O calls increases
performance considerably. For this method, assuming
column major storage,

No. of I/O requests = 1
No. of array elements read per access =
(ug —la + 1) X nrows

Data Sieving is a way of combining multiple 1/O
requests into one request so as to reduce the effect of
high I/0 latency time. A similar method called mes-
sage coalescing is used in interprocessor communica-
tion, where small messages are combined into a single
large message in order to reduce the effect of commu-
nication latency. However, Data Sieving is different
because instead of coalescing the required data ele-
ments together, it actually reads even unwanted data
elements so that large contiguous blocks are read. The
useful data is then filtered out by the runtime system
in an intermediate step and passed on to the program.
The unwanted data read into main memory is dynam-
ically discarded.

5.1 Reducing the Memory Requirement

If the stride in the array section is large, the amount
of memory required to read the entire block from col-

P
(11,12) | Section
CoC T
| |
| |
| |
| |
N
(ul,u2)
_—
Slab

Figure 7:

umn [to up will be quite large. There may not
be enough main memory available to store this en-
tire block. Since the amount of memory available to
create a temporary buffer is not known, we make the
assumption that there is always enough memory to
create a buffer of size equal to that of the ICLA. The
Data Sieving Method described above is modified as
follows to take this fact into account. Instead of read-
ing the entire block of data from column I5 to us, we
read only as many columns (or rows) at a time as can
fit in a buffer of the same size as the ICLA. For each
set of columns read, the data is sieved and passed on to
the program. This reduces the memory requirements
of the program considerably and increases the number
of I/O requests only slightly. Let us assume that the
array is stored in column major order on disk and n
columns of the OCLA can fit in the ICLA. Then for
this case

No. of I/O requests = [(uz — la + 1)/n]

No. of array elements read per access = n X nrows

5.2 Writing Array Sections

Suppose it is required to write an array section
(lh © uy @ s1,la @ uz @ sg) from the ICLA to the
LAF. The issues involved here are similar to those
described above for reading array sections. A Direct
Write Method can be used to write each element in-
dividually, but it suffers from the same problems of
large number of 1/O requests and low granularity of
data transfer. In order to reduce the number of I/O re-
quests, a method similar to the Data Sieving Method
described above needs to be used. If we directly use
Data Sieving in the reverse direction, ie. elements from

Sieve

N EN
r-——-=-=-=" A
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Lo - - - - = -

In-core ICLA
buffer

Data Sieving

the ICLA are placed at appropriate locations in a tem-
porary buffer with stride, and the buffer is written to
disk, the data in the buffer between the strided ele-
ments will overwrite the corresponding data elements
on disk. In order to maintain data consistency, it is
necessary to first read the entire block from the LAF
into the temporary buffer. Then, data elements from
the ICLA can be stored at appropriate locations in
the buffer and the entire buffer can be written back to
disk.

This is similar to what happens in cache memo-
ries when there is a write miss. In that case, a whole
line or block of data is fetched from main memory
into the cache and then the processor writes data into
the cache. This is done in hardware in the case of
caches. PASSION does this in software when writing
array sections using Data Sieving. Thus, writing sec-
tions requires twice the amount of I/O compared to
reading sections, because for each write to disk the
corresponding block has to first be fetched into mem-
ory. Therefore, for writing array sections
No. of I/O requests = 2[(us — {5 + 1)/n]

No. of array elements transferred per access =
n X nrows

5.3 Performance

Table 4 gives the performance of Data Sieving
versus the Direct Method for reading and writ-
ing array sections. An array of size 2K x 2K
is distributed among 64 processors in one di-
mension along columns. We measured the
time taken by the PASSION read _section() and
PASSION write_section() routines for reading and

Table 4: Performance of Direct Read/Write versus Data Sieving (time in sec.)

2K x 2K global array on 64 procs. (local array size 2K x 32), slab size = 16 columns

PASSION read_section || PASSION write_section
Array Section Direct Read | Sieving || Direct Write | Sieving
(1:2048:2, 1:32:2) 52.95 1.970 49.96 5.114
(1:2048:4, 1:32:4) 14.03 1.925 13.71 5.033
(10:1024:3, 3:22:3) 8.070 1.352 7.551 4.825
(100:2048:6, 5:32:4) 7.881 1.606 7.293 4.756
(1024:2048:2, 1:32:3) 18.43 1.745 17.98 5.290

Table 5: I/O requirements of Direct Read and Data Sieving Methods

2K x 2K global array on 64 procs. (local array size 2K x 32), slab size = 16 columns

No. of I/O requests No. of array elements read
Array Section Direct Read | Sieving || Direct Read Sieving
(1:2048:2, 1:32:2) 16384 2 16384 65536
(1:2048:4, 1:32:4) 4096 2 4096 65536
(10:1024:3, 3:22:3) 2373 2 2373 40960
(100:2048:6, 5:32:4) 2275 2 2275 57344
(1024:2048:2, 1:32:3) 5643 2 5643 65536

writing sections of the out-of-core local array on each
processor. We observe that Data Sieving provides
tremendous improvement over the Direct Method in
all cases. The reason for this is large number of 1/0O
requests in the Direct Method, even though the to-
tal amount of data accessed is higher in Data Siev-
ing. Table 5 gives the number of I/O requests and
the total amount of data transferred for each of the
array sections considered in Table 4. We observe that
in the Data Sieving Method, the number of data ele-
ments transferred is more or less the same for all cases.
This is because the total amount of data transferred
depends only on the lower and upper bounds of the
section and is independent of the stride. Hence the
time taken using Data Sieving does not vary much for
all the sections we have considered. However, there is
a wide variation in time for the Direct Method, be-
cause only those elements belonging to the section are
read. The time is lower for small sections and higher
for large sections.

We observe that even for writing array sections,
Data Sieving performs better than Direct Write even
though it requires reading the section before writing.
As expected, PASSION write_section() takes about
twice the time as PASSION read section() when us-
ing Data Sieving. Comparing the Direct Write and Di-
rect Read Methods, we find that writing takes slightly
less time than reading data. This is due to the way

I/0 is done in the Intel Touchstone Delta. The cwrite
call returns after data is written to the cache in the
I/O node, without waiting for the data to be written
to disk.

All PASSION routines involving array sections use
Data Sieving for greater efficiency.

6 Related Work

There has been some related research in software
support for high performance parallel I/O. The Two-
phase I/O read/write strategy was first proposed by
Bordawekar et al [8, 2]. The effects of prefetching
blocks of a file in a multiprocessor file system are
studied in [11]. Prefetching for in-core problems is
discussed in [13, 3]. Vesta is a parallel file system de-
signed and developed at IBM T. J. Watson Research
Center [7, 5, 6] which supports logical partitioning of
files. File declustering, where different blocks of a file
are stored on distinct disks is suggested in [12]. This
is used in the Bridge File System [10], in Intel’s Con-
current File System (CFS) [15] and in various RAID
schemes [14]. An overview of the various issues in-
volved in high performance I/O is given in [9].

7 Conclusions

The PASSION Runtime Library provides high-level
runtime support for loosely synchronous out-of-core
computations on distributed memory parallel comput-

ers. The routines perform efficient parallel I/O as
well as interprocessor communication. The PASSION
runtime procedures can either be used together with
a compiler to translate out-of-core data parallel pro-
grams, or used directly by application programmers.

A number of optimizations have been incorporated
in the runtime library for greater efficiency. The two
optimizations described in this paper, namely Data
Prefetching and Data Sieving, provide considerable
performance improvement. Data Prefetching overlaps
computation with I/O, while Data Sieving improves
the granularity of I/O accesses for reading or writing
array sections.

The PASSION Runtime Library is currently
available on the Intel Paragon, Touchstone Delta
and iPSC/860 using Intel’s Concurrent File Sys-
tem. Efforts are underway to port it to the
IBM SP-1 and SP-2 using the Vesta Paral-
lel File System. Additional information about
PASSION is available on the World Wide Web
at http://www.cat.syr.edu/passion.html. PAS-
SION related papers can also be obtained from the
anonymous ftp site erc.cat.syr.edu.

Acknowledgments

We thank Geoffrey Fox, Ken Kennedy, Chuck Koel-
bel, Paul Messina and Joel Saltz for many fruitful dis-
cussions and helpful comments.

References
[1] R. Bordawekar, A. Choudhary, and R. Thakur.
Data Access Reorganizations in Compiling Out-
of-core Data Parallel Programs on Distributed
Memory Machines. Technical Report SCCS—-622,
NPAC, Syracuse University, September 1994.

[2] R. Bordawekar, J. del Rosario, and A. Choud-
hary. Design and Evaluation of Primitives for
Parallel I/O. In Proceedings of Supercomputing
’93, pages 452-461, November 1993.

[3] D. Callahan, K. Kennedy, and A. Porterfield.
Software Prefetching. In Proceedings of ASPLOS
91, pages 40-52, 1991.

[4] A. Choudhary, R. Bordawekar, M. Harry,
R. Krishnaiyer, R. Ponnusamy, T. Singh, and
R. Thakur. PASSION: Parallel and Scalable
Software for Input-Output. Technical Report
SCCS-636, NPAC, Syracuse University, Septem-
ber 1994.

[5] P. Corbett, S. Baylor, and D. Feitelson. Overview
of the Vesta Parallel File System. In Proceedings
of the Workshop on I/O in Parallel Computer
Systems at IPPS 93, pages 1-16, April 1993.

[6] P. Corbett and D. Feitelson.
Vesta Parallel File System.

Overview of the
In Proceedings of

[11]

[12]

[13]

[15]

[16]

the Scalable High Performance Computing Con-
ference, pages 63-70, May 1994.

P. Corbett, D. Feitelson, J. Prost, and S. Baylor.
Parallel Access to Files in the Vesta File System.
In Proceedings of Supercomputing 93, pages 472—
481, November 1993.

J. del Rosario, R. Bordawekar, and A. Choud-
hary. A Two-Phase Strategy for Achieving High-
Performance Parallel I/O. Technical Report
SCCS-408, NPAC, Syracuse University, October
1992.

J. del Rosario and A. Choudhary. High Perfor-
mance I/0O for Parallel Computers: Problems and
Prospects. IEEE Computer, pages 59-68, March
1994.

P. Dibble, M. Scott, and C. Ellis. Bridge: A High
Performance File System for Parallel Processors.
In Proceedings of the 8" International Confer-
ence on Distributed Computing Systems, pages
154-161, June 1988.

D. Kotz and C. Ellis. Prefetching in File Systems
for MIMD Multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, pages 218—
230, April 1990.

M. Livny, S. Khoshafian, and H. Boral. Multi-
Disk Management Algorithms. In Proceedings
of the 1987 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Sys-
tems, pages 6977, May 1987.

T. Mowry, M. Lam, and A. Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetch-
ing. In Proceedings of ASPLOS 92, pages 62-73,
October 1992.

D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks. In Pro-
ceedings of ACM SIGMOD International Confer-
ence on Management of Data, June 1988.

P. Pierce. A Concurrent File System for a Highly
Parallel Mass Storage Subsystem. In Proceed-
ings of 4'" Conference on Hypercubes, Concur-
rent Computers and Applications, pages 155-160,
March 1989.

R. Thakur, R. Bordawekar, and A. Choud-
hary. Compiler and Runtime Support for Out-
of-Core HPF Programs. In Proceedings of the 8"
ACM International Conference on Supercomput-

ing, pages 382-391, July 1994.

